Download Free Sample Report

Global AI Infrastructure Market Research Report 2024(Status and Outlook)

Global AI Infrastructure Market Research Report 2024(Status and Outlook)

  • Published on : 28 November 2024
  • Pages :113
  • Report Code:SMR-8007863

Download Report PDF Instantly

Leave This Empty:

Secure

Report overview

The global AI Infrastructure market size was valued at US$ 34.5 billion in 2024 and is projected to reach US$ 78.9 billion by 2030, at a CAGR of 14.8% during the forecast period 2024-2030.

United States AI Infrastructure market size was valued at US$ 10.2 billion in 2024 and is projected to reach US$ 22.6 billion by 2030, at a CAGR of 14.2% during the forecast period 2024-2030.


Hardware and software systems designed to support artificial intelligence applications and workloads.

Rapid growth driven by increasing adoption of AI across industries. Rising demand for high-performance computing and data processing capabilities. Ongoing developments in AI algorithms and applications fueling infrastructure requirements.

Report Overview

The AI Infrastructure market refers to the specialized hardware, software, and services designed to support the development, training, and deployment of artificial intelligence (AI) applications. As AI technology becomes more sophisticated, organizations require robust infrastructure to handle the immense computational demands and data processing tasks inherent in AI workloads. The market for AI infrastructure is rapidly expanding, driven by growing AI adoption across industries such as healthcare, finance, automotive, retail, and telecommunications.

Key Components of AI Infrastructure:

  1. Hardware:

    • Graphics Processing Units (GPUs): GPUs are vital for AI training due to their ability to perform massive parallel computations. Leading companies like NVIDIA and AMD are major players in providing AI-focused GPUs.
    • Application-Specific Integrated Circuits (ASICs): Specialized chips designed for specific AI tasks, often used in high-performance applications.
    • Field-Programmable Gate Arrays (FPGAs): Reconfigurable hardware that can be optimized for AI workloads.
    • Central Processing Units (CPUs): High-performance CPUs continue to be used for general AI workloads, though they are often used in conjunction with GPUs or other accelerators.
  2. Software:

    • AI Frameworks: Popular AI development frameworks like TensorFlow, PyTorch, and Apache MXNet provide essential tools for AI developers to create and optimize models.
    • Data Management and Processing Software: AI requires large datasets, so tools for data storage, processing, and retrieval (e.g., Hadoop, Apache Spark) are crucial.
    • Model Deployment and Optimization Platforms: Tools for deploying AI models at scale, such as Kubernetes for containerization and deployment, or optimization solutions for efficient model execution.
  3. Storage Solutions:

    • High-speed storage: AI workloads generate vast amounts of data, necessitating fast, scalable storage solutions like NVMe (Non-Volatile Memory Express) or distributed storage systems (e.g., cloud-based solutions like Amazon S3, Azure Blob Storage).
  4. Cloud Services:

    • AI-as-a-Service (AIaaS): Cloud providers like AWS, Microsoft Azure, and Google Cloud offer scalable AI services, enabling companies to access AI infrastructure without large upfront investments.
    • Edge AI: AI computing done at the edge, closer to the data source, reduces latency and bandwidth, especially useful in applications like autonomous vehicles, IoT, and smart cities.

Market Drivers:

  • Growing AI Adoption: Industries are increasingly adopting AI for automation, predictive analytics, and enhanced customer experiences.
  • Demand for Data Processing Power: AI applications like deep learning and neural networks require vast computational power, driving demand for more advanced infrastructure.
  • Expansion of Cloud Computing: Cloud service providers offer scalable AI infrastructure that businesses can use without significant capital investments in hardware.
  • AI in Edge Computing: As AI moves to edge devices, demand for infrastructure capable of real-time data processing close to the source is growing.

Market Trends:

  • AI at the Edge: The growth of IoT and 5G technologies is pushing AI processing closer to the edge, reducing the need to send data back to central servers.
  • Sustainability: As AI infrastructure consumes massive amounts of energy, there is a push towards creating more energy-efficient systems.
  • AI Custom Chips: The rise of specialized chips designed exclusively for AI tasks, such as Google’s Tensor Processing Units (TPUs), is gaining traction.
  • Hybrid AI Models: Companies are increasingly using a mix of on-premise and cloud AI infrastructure to balance control, performance, and cost.

The AI Infrastructure market is expected to experience significant growth as AI becomes more pervasive across sectors. With the increasing complexity of AI models, there will be continued demand for more powerful and efficient hardware, advanced software, and scalable cloud-based solutions. The expansion of AI at the edge and advancements in quantum computing could further revolutionize AI infrastructure.

This report provides a deep insight into the global AI Infrastructure market covering all its essential aspects. This ranges from a macro overview of the market to micro details of the market size, competitive landscape, development trend, niche market, key market drivers and challenges, SWOT analysis, value chain analysis, etc.

The analysis helps the reader to shape the competition within the industries and strategies for the competitive environment to enhance the potential profit. Furthermore, it provides a simple framework for evaluating and accessing the position of the business organization. The report structure also focuses on the competitive landscape of the Global AI Infrastructure Market, this report introduces in detail the market share, market performance, product situation, operation situation, etc. of the main players, which helps the readers in the industry to identify the main competitors and deeply understand the competition pattern of the market.

In a word, this report is a must-read for industry players, investors, researchers, consultants, business strategists, and all those who have any kind of stake or are planning to foray into the AI Infrastructure market in any manner.

Global AI Infrastructure Market: Market Segmentation Analysis

The research report includes specific segments by region (country), manufacturers, Type, and Application. Market segmentation creates subsets of a market based on product type, end-user or application, Geographic, and other factors. By understanding the market segments, the decision-maker can leverage this targeting in the product, sales, and marketing strategies. Market segments can power your product development cycles by informing how you create product offerings for different segments.

Key Company

  • IBM
  • Intel Corporation
  • Microsoft
  • Amazon Web Services
  • Dell
  • HPE
  • Advanced Micro Devices
  • ARM
  • CISCO
  • Samsung Electronics
  • NVIDIA Corporation
  • Advanced Micro Devices
  • Cambricon Technology
  • SK HYNIX Inc.
  • Including or Excluding key companies relevant to your analysis.
Market Segmentation (by Type)
  • Hardware
  • Software
Market Segmentation (by Application)
  • Public Utilities
  • Ecosystem
  • Others
Geographic Segmentation
  • North America (USA, Canada, Mexico)
  • Europe (Germany, UK, France, Russia, Italy, Rest of Europe)
  • Asia-Pacific (China, Japan, South Korea, India, Southeast Asia, Rest of Asia-Pacific)
  • South America (Brazil, Argentina, Columbia, Rest of South America)
  • The Middle East and Africa (Saudi Arabia, UAE, Egypt, Nigeria, South Africa, Rest of MEA)
Key Benefits of This Market Research:
  • Industry drivers, restraints, and opportunities covered in the study
  • Neutral perspective on the market performance
  • Recent industry trends and developments
  • Competitive landscape & strategies of key players
  • Potential & niche segments and regions exhibiting promising growth covered
  • Historical, current, and projected market size, in terms of value
  • In-depth analysis of the AI Infrastructure Market
  • Overview of the regional outlook of the AI Infrastructure Market:
Key Reasons to Buy this Report:
  • Access to date statistics compiled by our researchers. These provide you with historical and forecast data, which is analyzed to tell you why your market is set to change
  • This enables you to anticipate market changes to remain ahead of your competitors
  • You will be able to copy data from the Excel spreadsheet straight into your marketing plans, business presentations, or other strategic documents
  • The concise analysis, clear graph, and table format will enable you to pinpoint the information you require quickly
  • Provision of market value (USD Billion) data for each segment and sub-segment
  • Indicates the region and segment that is expected to witness the fastest growth as well as to dominate the market
  • Analysis by geography highlighting the consumption of the product/service in the region as well as indicating the factors that are affecting the market within each region
  • Competitive landscape which incorporates the market ranking of the major players, along with new service/product launches, partnerships, business expansions, and acquisitions in the past five years of companies profiled
  • Extensive company profiles comprising of company overview, company insights, product benchmarking, and SWOT analysis for the major market players
  • The current as well as the future market outlook of the industry concerning recent developments which involve growth opportunities and drivers as well as challenges and restraints of both emerging as well as developed regions
  • Includes in-depth analysis of the market from various perspectives through Porter